From Target Prediction to Mechanistic Insights: Revealing Air Pollution-Driven Mechanisms in Endometrial Cancer via Interpretable Machine Learning and Molecular Docking
Air pollution is a known contributor to cancer risk, although its specific impact on endometrial cancer (EC) remains unclear. This study integrates network toxicology, transcriptomics, molecular docking, and machine learning to investigate pollutant–gene interactions in EC. We identify 83 air pollut...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/7/841 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|