The minimal growth of entire functions with given zeros along unbounded sets
Let $l$ be a continuous function on $\mathbb{R}$ increasing to $+\infty$, and $\varphi$ be a positive function on $\mathbb{R}$. We proved that the condition $$ \varliminf_{x\to+\infty}\frac{\varphi(\ln[x])}{\ln x}>0 $$ is necessary and sufficient in order that for any complex sequence $(\zeta_n)$...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2020-12-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/160 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|