Model-free estimation of completeness, uncertainties, and outliers in atomistic machine learning using information theory
Abstract An accurate description of information is relevant for a range of problems in atomistic machine learning (ML), such as crafting training sets, performing uncertainty quantification (UQ), or extracting physical insights from large datasets. However, atomistic ML often relies on unsupervised...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-59232-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|