Intraspecies associations from strain-rich metagenome samples

Summary: Genetically distinct strains of a species can vary widely in phenotype, reducing the utility of species-resolved microbiome measurements for detecting associations with health or disease. While metagenomics theoretically provides information on all strains in a sample, current strain-resolv...

Full description

Saved in:
Bibliographic Details
Main Authors: Evan B. Qu, Jacob S. Baker, Laura Markey, Veda Khadka, Chris Mancuso, A. Delphine Tripp, Tami D. Lieberman
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124725009052
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Genetically distinct strains of a species can vary widely in phenotype, reducing the utility of species-resolved microbiome measurements for detecting associations with health or disease. While metagenomics theoretically provides information on all strains in a sample, current strain-resolved analysis methods face a tradeoff: de novo genotyping approaches can detect novel strains but struggle when applied to strain-rich or low-coverage samples, while reference database methods work robustly across sample types but are insensitive to novel diversity. We present PHLAME, a method that bridges this divide by combining the advantages of reference database approaches with novelty awareness. PHLAME explicitly defines clades at multiple phylogenetic levels and introduces a probabilistic, mutation-based framework to quantify novelty from the nearest reference. By applying PHLAME to publicly available human skin and vaginal metagenomes, we find clade associations with coexisting species, geography, and host age. The ability to characterize intraspecies associations and dynamics in previously inaccessible environments will enable strain-level insights from accumulating metagenomic data.
ISSN:2211-1247