Data-Driven Cooperative Localization Algorithm for Deep-Sea Landing Vehicles Under Track Slippage

The deep-sea landing vehicle (DSLV) swarm exploration system is a novel platform for the detection of marine mineral resources. A high-precision cooperative localization system with Ultra-Short Baseline (USBL), Doppler Velocity Log (DVL), and electronic compass (EC) plays a vital role in the DSLV sw...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenzhuo Wei, Wei Guo, Yanjun Lan, Ben Liu, Yu Sun, Sen Gao
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/5/755
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deep-sea landing vehicle (DSLV) swarm exploration system is a novel platform for the detection of marine mineral resources. A high-precision cooperative localization system with Ultra-Short Baseline (USBL), Doppler Velocity Log (DVL), and electronic compass (EC) plays a vital role in the DSLV swarm exploration system. However, DVL measurements can be seriously interrupted due to the complex operational underwater environment, leading to unstable localization performance. The accuracy of the cooperative localization system could be further degraded by the persistent rubber track slippage during the vehicle’s movement over the soft seabed. In this study, a data-driven cooperative localization algorithm with a velocity prediction model is proposed to improve the positioning accuracy of DSLV under track slippage. First, a velocity prediction model for DVL measurements is constructed using multi-output least squares support vector regression (MLSSVR), and a genetic algorithm (GA) is further employed to optimize the model’s hyperparameters in order to enhance the robustness of the framework. Furthermore, the outputs of MLSSVR are fed into a DSLV position estimation framework based on the Unscented Kalman Filter (UKF) to improve localization accuracy in the presence of DVL failures. To validate the proposed method, the RecurDyn multibody dynamics simulation platform is applied for data synthesis, accounting for both the impact of the soft seabed and real-world motion simulation. The experimental results indicate that during DVL failure, the proposed algorithm can effectively compensate for the cooperative localization errors caused by track slippage, thereby significantly improving the accuracy and reliability of the DSLV cooperative localization system.
ISSN:2072-4292