A Comparative Study of Unsupervised Deep Learning Methods for Anomaly Detection in Flight Data
This paper provides a comparative study of unsupervised Deep Learning (DL) methods for anomaly detection in Flight Data Monitoring (FDM). The paper applies Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Convolutional Neural Network (CNN), classic Transformer architecture, and LSTM comb...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Aerospace |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2226-4310/12/7/645 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|