Towards Noncommutative Linking Numbers via the Seiberg-Witten Map

Some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n new knots at the nth order of the Seiberg-Wi...

Full description

Saved in:
Bibliographic Details
Main Authors: H. García-Compeán, O. Obregón, R. Santos-Silva
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2015/845328
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556679122649088
author H. García-Compeán
O. Obregón
R. Santos-Silva
author_facet H. García-Compeán
O. Obregón
R. Santos-Silva
author_sort H. García-Compeán
collection DOAJ
description Some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n new knots at the nth order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincaré dual to the higher-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincaré dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincaré dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative “Jones-Witten” invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter; we also show the relation to the noncommutative Landau levels.
format Article
id doaj-art-6e70b471a08641fa91319164df670895
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-6e70b471a08641fa91319164df6708952025-02-03T05:44:36ZengWileyAdvances in Mathematical Physics1687-91201687-91392015-01-01201510.1155/2015/845328845328Towards Noncommutative Linking Numbers via the Seiberg-Witten MapH. García-Compeán0O. Obregón1R. Santos-Silva2Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico City, DF, MexicoDepartamento de Física, DCI, Universidad de Guanajuato, 37150 León, GTO, MexicoDepartamento de Física, DCI, Universidad de Guanajuato, 37150 León, GTO, MexicoSome geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n new knots at the nth order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincaré dual to the higher-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincaré dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincaré dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative “Jones-Witten” invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter; we also show the relation to the noncommutative Landau levels.http://dx.doi.org/10.1155/2015/845328
spellingShingle H. García-Compeán
O. Obregón
R. Santos-Silva
Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
Advances in Mathematical Physics
title Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
title_full Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
title_fullStr Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
title_full_unstemmed Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
title_short Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
title_sort towards noncommutative linking numbers via the seiberg witten map
url http://dx.doi.org/10.1155/2015/845328
work_keys_str_mv AT hgarciacompean towardsnoncommutativelinkingnumbersviatheseibergwittenmap
AT oobregon towardsnoncommutativelinkingnumbersviatheseibergwittenmap
AT rsantossilva towardsnoncommutativelinkingnumbersviatheseibergwittenmap