Regularizing Effects for a Singular Elliptic Problem
In this paper, we prove existence and regularity results for a nonlinear elliptic problem of p-Laplacian type with a singular potential like <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/14/1/47 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove existence and regularity results for a nonlinear elliptic problem of p-Laplacian type with a singular potential like <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>f</mi><msup><mi>u</mi><mi>γ</mi></msup></mfrac></mstyle></semantics></math></inline-formula> and a lower order term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mi>u</mi></mrow></semantics></math></inline-formula>, where <i>u</i> is the solution and <i>b</i> and <i>f</i> are only assumed to be summable functions. We show that, despite the lack of regularity of the data, for suitable choices of the function <i>b</i> in the lower order term, a strong regularizing effect appears. In particular we exhibit the existence of bounded solutions. Worth notice is that this result fails if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>, i.e., in absence of the lower order term. Moreover, we show that, if the singularity is “not too large” (i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>), such a regular solution is also unique. |
---|---|
ISSN: | 2075-1680 |