On the Performance of Energy Harvesting Dual-Hop Free-Space Optical Communication Systems with Secrecy Analysis

In this study, we present a dual-hop decode-and-forward relaying-based free-space optical (FSO) communication system. We consider utilizing simultaneous lightwave information and power transfer (SLIPT) with a time-splitting technique at the relay, where the direct current component of the received o...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdulgani A. Ibrahim, Serdar Özgür Ata, Lütfiye Durak-Ata
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/319
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we present a dual-hop decode-and-forward relaying-based free-space optical (FSO) communication system. We consider utilizing simultaneous lightwave information and power transfer (SLIPT) with a time-splitting technique at the relay, where the direct current component of the received optical signal is harvested as a transmit power for the relay. It is assumed that the FSO links experience a Malaga turbulence channel with pointing errors. In order to evaluate the performance of the proposed communication system, closed-form expressions for outage probability, ergodic capacity, average bit error rate, and throughput are derived. Additionally, to analyze the physical layer security of the proposed system, closed-form expressions for secrecy outage probability and strictly positive secrecy capacity are obtained. Finally, the accuracy of the derived analytical expressions are validated with Monte Carlo simulations. Results show that our proposed system model outperforms its non-SLIPT counterpart.
ISSN:1424-8220