Limit theorems for random Dirichlet series: boundary case

Buraczewski et al. (2023) proved a functional limit theorem (FLT) and a law of the iterated logarithm (LIL) for a random Dirichlet series ${\textstyle\sum _{k\ge 2}}\frac{{(\log k)^{\alpha }}}{{k^{1/2+s}}}{\eta _{k}}$ as $s\to 0+$, where $\alpha \gt -1/2$ and ${\eta _{1}},{\eta _{2}},\dots $ are ind...

Full description

Saved in:
Bibliographic Details
Main Authors: Alexander Iksanov, Ruslan Kostohryz
Format: Article
Language:English
Published: VTeX 2025-03-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://www.vmsta.org/doi/10.15559/25-VMSTA276
Tags: Add Tag
No Tags, Be the first to tag this record!