The Influence of Calcium Ions and pH on Fluoride Release from Commercial Fluoride Gels in an In Vitro Study
Fluoride gels are widely used in dental prophylaxis due to their proven ability to prevent demineralization and promote remineralization of hard dental tissues. However, the effectiveness of fluoride release from such gels may be significantly influenced by environmental factors such as pH and the p...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Gels |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2310-2861/11/7/486 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Fluoride gels are widely used in dental prophylaxis due to their proven ability to prevent demineralization and promote remineralization of hard dental tissues. However, the effectiveness of fluoride release from such gels may be significantly influenced by environmental factors such as pH and the presence of calcium ions. This in vitro study aimed to evaluate how these variables affect fluoride ion release from three commercially available fluoride gels—Clarben, Flairesse, and Lunos. The gels were incubated in artificial saliva of varying pH levels (4.5, 6.0, 7.0, and 7.5) with and without the addition of calcium, as well as in other water-based media—tap water, deionized water, and 0.9% NaCl solution. Fluoride release and changes in pH were measured and statistically analyzed using a multifactorial ANOVA. The results revealed that fluoride release was highest in calcium-free environments and at neutral to slightly alkaline pH, while the presence of calcium significantly reduced fluoride availability. Among the tested products, Flairesse and Lunos exhibited sensitivity to calcium’s presence, unlike Clarben. Fluoride release was generally higher in water than in artificial saliva. Additionally, all gels induced a decrease in pH, which varied depending on the initial pH and calcium content. These findings underline the importance of environmental conditions in optimizing the clinical efficacy of fluoride gel applications. |
|---|---|
| ISSN: | 2310-2861 |