Sums of distances between points of a sphere
Given N points on a unit sphere in k+1 dimensional Euclidean space, we obtain an upper bound for the sum of all the distances they determine which improves upon earlier work by K. B. Stolarsky when k is even. We use his method, but derive a variant of W. M. Schmidt's results for the discrepancy...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1982-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171282000647 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|