On the Diophantine equation x2+p2k+1=4yn
It has been proved that if p is an odd prime, y>1, k≥0, n is an integer greater than or equal to 4, (n,3h)=1 where h is the class number of the field Q(−p), then the equation x2+p2k+1=4yn has exactly five families of solution in the positive integers x, y. It is further proved that when n=3 and p...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2002-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171202106107 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|