Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
Let $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-03-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206235021967360 |
---|---|
author | Zhang, Yuan |
author_facet | Zhang, Yuan |
author_sort | Zhang, Yuan |
collection | DOAJ |
description | Let $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1 |
format | Article |
id | doaj-art-667c769488b541429306a5a2958b894b |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-03-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-667c769488b541429306a5a2958b894b2025-02-07T11:16:25ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-03-01362G217117610.5802/crmath.56110.5802/crmath.561Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domainsZhang, Yuan0Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, USALet $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/canonical solution$\bar{\partial }$ equationBergman projectionproduct domainsSobolev regularity |
spellingShingle | Zhang, Yuan Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains Comptes Rendus. Mathématique canonical solution $\bar{\partial }$ equation Bergman projection product domains Sobolev regularity |
title | Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains |
title_full | Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains |
title_fullStr | Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains |
title_full_unstemmed | Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains |
title_short | Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains |
title_sort | sobolev regularity of the canonical solutions to bar partial on product domains |
topic | canonical solution $\bar{\partial }$ equation Bergman projection product domains Sobolev regularity |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/ |
work_keys_str_mv | AT zhangyuan sobolevregularityofthecanonicalsolutionstobarpartialonproductdomains |