Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains

Let $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1

Saved in:
Bibliographic Details
Main Author: Zhang, Yuan
Format: Article
Language:English
Published: Académie des sciences 2024-03-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206235021967360
author Zhang, Yuan
author_facet Zhang, Yuan
author_sort Zhang, Yuan
collection DOAJ
description Let $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1
format Article
id doaj-art-667c769488b541429306a5a2958b894b
institution Kabale University
issn 1778-3569
language English
publishDate 2024-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-667c769488b541429306a5a2958b894b2025-02-07T11:16:25ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-03-01362G217117610.5802/crmath.56110.5802/crmath.561Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domainsZhang, Yuan0Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, USALet $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/canonical solution$\bar{\partial }$ equationBergman projectionproduct domainsSobolev regularity
spellingShingle Zhang, Yuan
Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
Comptes Rendus. Mathématique
canonical solution
$\bar{\partial }$ equation
Bergman projection
product domains
Sobolev regularity
title Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
title_full Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
title_fullStr Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
title_full_unstemmed Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
title_short Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains
title_sort sobolev regularity of the canonical solutions to bar partial on product domains
topic canonical solution
$\bar{\partial }$ equation
Bergman projection
product domains
Sobolev regularity
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/
work_keys_str_mv AT zhangyuan sobolevregularityofthecanonicalsolutionstobarpartialonproductdomains