Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains

Let $\Omega $ be a product domain in $\mathbb{C}^n, n\ge 2$, where each slice has smooth boundary. We observe that the canonical solution operator for the $\bar{\partial }$ equation on $\Omega $ is bounded in $W^{k,p}(\Omega )$, $k\in \mathbb{Z}^+, 1

Saved in:
Bibliographic Details
Main Author: Zhang, Yuan
Format: Article
Language:English
Published: Académie des sciences 2024-03-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/
Tags: Add Tag
No Tags, Be the first to tag this record!