Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
The paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/640628 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on [0,+∞) and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval [0,b]. |
---|---|
ISSN: | 1085-3375 1687-0409 |