H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking

Abstract Immunohistochemistry (IHC) is crucial for the clinical categorisation of breast cancer cases. Deep generative models may offer a cost-effective alternative by virtually generating IHC images from hematoxylin and eosin samples. This review explores the state-of-the-art in virtual staining fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Pascal Klöckner, José Teixeira, Diana Montezuma, João Fraga, Hugo M. Horlings, Jaime S. Cardoso, Sara P. Oliveira
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01741-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849389328844718080
author Pascal Klöckner
José Teixeira
Diana Montezuma
João Fraga
Hugo M. Horlings
Jaime S. Cardoso
Sara P. Oliveira
author_facet Pascal Klöckner
José Teixeira
Diana Montezuma
João Fraga
Hugo M. Horlings
Jaime S. Cardoso
Sara P. Oliveira
author_sort Pascal Klöckner
collection DOAJ
description Abstract Immunohistochemistry (IHC) is crucial for the clinical categorisation of breast cancer cases. Deep generative models may offer a cost-effective alternative by virtually generating IHC images from hematoxylin and eosin samples. This review explores the state-of-the-art in virtual staining for breast cancer biomarkers (HER2, PgR, ER and Ki-67) and benchmarks several models on public datasets. It serves as a resource for researchers and clinicians interested in applying or developing virtual staining techniques.
format Article
id doaj-art-617f9b71b6b3464f951e2de73eef9b81
institution Kabale University
issn 2398-6352
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-617f9b71b6b3464f951e2de73eef9b812025-08-20T03:42:00ZengNature Portfolionpj Digital Medicine2398-63522025-07-018111810.1038/s41746-025-01741-9H&E to IHC virtual staining methods in breast cancer: an overview and benchmarkingPascal Klöckner0José Teixeira1Diana Montezuma2João Fraga3Hugo M. Horlings4Jaime S. Cardoso5Sara P. Oliveira6Computational Pathology Group, The Netherlands Cancer InstituteComputational Pathology Group, The Netherlands Cancer InstituteIMP DiagnosticsIMP DiagnosticsComputational Pathology Group, The Netherlands Cancer InstituteFaculty of Engineering, University of PortoComputational Pathology Group, The Netherlands Cancer InstituteAbstract Immunohistochemistry (IHC) is crucial for the clinical categorisation of breast cancer cases. Deep generative models may offer a cost-effective alternative by virtually generating IHC images from hematoxylin and eosin samples. This review explores the state-of-the-art in virtual staining for breast cancer biomarkers (HER2, PgR, ER and Ki-67) and benchmarks several models on public datasets. It serves as a resource for researchers and clinicians interested in applying or developing virtual staining techniques.https://doi.org/10.1038/s41746-025-01741-9
spellingShingle Pascal Klöckner
José Teixeira
Diana Montezuma
João Fraga
Hugo M. Horlings
Jaime S. Cardoso
Sara P. Oliveira
H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking
npj Digital Medicine
title H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking
title_full H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking
title_fullStr H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking
title_full_unstemmed H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking
title_short H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking
title_sort h e to ihc virtual staining methods in breast cancer an overview and benchmarking
url https://doi.org/10.1038/s41746-025-01741-9
work_keys_str_mv AT pascalklockner hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking
AT joseteixeira hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking
AT dianamontezuma hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking
AT joaofraga hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking
AT hugomhorlings hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking
AT jaimescardoso hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking
AT sarapoliveira hetoihcvirtualstainingmethodsinbreastcanceranoverviewandbenchmarking