Study for Predicting Land Surface Temperature (LST) Using Landsat Data: A Comparison of Four Algorithms
The soft computing models used for predicting land surface temperature (LST) changes are very useful to evaluate and forecast the rapidly changing climate of the world. In this study, four soft computing techniques, namely, multivariate adaptive regression splines (MARS), wavelet neural network (WNN...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Advances in Civil Engineering |
| Online Access: | http://dx.doi.org/10.1155/2020/7363546 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|