Shaping freeform nanophotonic devices with geometric neural parameterization
Abstract Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geome...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01752-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geometric parameterization in which nanophotonic device layouts are defined using an analytic neural network representation. Neuroshaper serves as a qualitatively new way to perform shape optimization by capturing multi-scalar, freeform geometries in an overparameterized representation scheme, enabling effective optimization in a smoothened, high dimensional geometric design space. We show that Neuroshaper can enforce constraints and topology manipulation in a manner where local constraints lead to global changes in device morphology. We further show numerically and experimentally that Neuroshaper can apply to a diversity of nanophotonic devices. The versatility and capabilities of Neuroshaper reflect the ability of neural representation to augment concepts in topological design. |
|---|---|
| ISSN: | 2057-3960 |