Shaping freeform nanophotonic devices with geometric neural parameterization
Abstract Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geome...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01752-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|