On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai's Conjecture

This study establishes that the sole positive integer solution to the exponential Diophantine equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ is $(x,y,z)=(1,1,2)$ for all $r>1$. The proof employs elementary techniques from number theory, a classification method, and Zsigmondy's Primitive Divisor...

Full description

Saved in:
Bibliographic Details
Main Authors: Murat Alan, Tuba Çokoksen
Format: Article
Language:English
Published: Emrah Evren KARA 2024-12-01
Series:Communications in Advanced Mathematical Sciences
Subjects:
Online Access:https://dergipark.org.tr/en/download/article-file/4265424
Tags: Add Tag
No Tags, Be the first to tag this record!