Air-liquid interface culture alters the characteristics and functions of monolayers generated from human iPS cell‑derived enterocyte‑like cell organoids

To evaluate the intestinal absorption and metabolism of orally administered drugs, human induced pluripotent stem (iPS) cell‑derived enterocyte‑like cells (ELCs) are expected to be useful. In a previous report, we succeeded in developing a highly functional monolayer platform (ELC-org-mono) from hum...

Full description

Saved in:
Bibliographic Details
Main Authors: Tatsuya Inui, Yusei Uraya, Yukiko Ueyama-Toba, Hiroyuki Mizuguchi
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:European Journal of Cell Biology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0171933525000044
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To evaluate the intestinal absorption and metabolism of orally administered drugs, human induced pluripotent stem (iPS) cell‑derived enterocyte‑like cells (ELCs) are expected to be useful. In a previous report, we succeeded in developing a highly functional monolayer platform (ELC-org-mono) from human iPS cell-derived ELCs through an organoid culture and demonstrated its suitability for pharmacokinetic studies. In recent years, the air–liquid interface (ALI) culture model was developed, allowing for the culture of epithelial tissue under conditions that mimic the in vivo environment. In the present study, we applied ALI culture to ELC-org-mono for further improvement of intestinal functions. ALI culture of ELC-org-mono greatly developed goblet cells and enhanced the gene expression levels of many drug-metabolizing enzymes, drug transporters and intestinal differentiation markers. However, their activities were not enhanced. RNA-seq analysis suggested that ALI culture increased the expression of genes related to metabolic processes but decreased glycolytic processes. Analysis of glycolytic capacity confirmed that ALI culture decreased glycolytic activities. Thus, there is room for some adjustment in the ALI culture model to optimize its applicability to pharmacokinetic studies using ELC-org-mono.
ISSN:0171-9335