Compactly convex sets in linear topological spaces
A convex subset $X$ of a~linear topological space is called{em compactly convex} if there is a~continuous compact-valuedmap $Phicolon Xoexp(X)$ such that$[x,y]subsetPhi(x)cupPhi(y)$ for all $x,yin X$. We provethat each convex subset of the plane is compactly convex. Onthe other hand, the space $IR^3...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2012-05-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/texts/2012/37_2/161-173.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|