Inequalities for Walsh like random variables

Let (Xn)n≥1 be a sequence of mean zero independent random variables. Let Wk={∏j=1kXij|1≤i1<i2…<ik}, Yk=⋃j≤kWj and let [Yk] be the linear span of Yk. Assume δ≤|Xn|≤K for some δ>0 and K>0 and let C(p,m)=16(52p2p−1)m−1plogp(Kδ)m for 1<p<∞. We show that for f∈[Ym] the following inequal...

Full description

Saved in:
Bibliographic Details
Main Author: D. Hajela
Format: Article
Language:English
Published: Wiley 1990-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171290000527
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558655048777728
author D. Hajela
author_facet D. Hajela
author_sort D. Hajela
collection DOAJ
description Let (Xn)n≥1 be a sequence of mean zero independent random variables. Let Wk={∏j=1kXij|1≤i1<i2…<ik}, Yk=⋃j≤kWj and let [Yk] be the linear span of Yk. Assume δ≤|Xn|≤K for some δ>0 and K>0 and let C(p,m)=16(52p2p−1)m−1plogp(Kδ)m for 1<p<∞. We show that for f∈[Ym] the following inequalities hold:‖f‖2≤‖f‖p≤C(p,m)‖f‖2                       for   2<p<∞‖f‖2≤C(q,m)‖f‖p≤C(q,m)‖f‖2     for   1<p<2,   1p+1q=1and ‖f‖2≤C(4,m)2‖f‖1≤C(4,m)2‖f‖2. These generalize various well known inequalities on Walsh functions.
format Article
id doaj-art-56bf7389948147e4b2744afc564d1a9b
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1990-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-56bf7389948147e4b2744afc564d1a9b2025-02-03T01:31:51ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113235335610.1155/S0161171290000527Inequalities for Walsh like random variablesD. Hajela0Bell Communications Research, 2P-390, 445 South Street, Morristown, New Jersey 07960, USALet (Xn)n≥1 be a sequence of mean zero independent random variables. Let Wk={∏j=1kXij|1≤i1<i2…<ik}, Yk=⋃j≤kWj and let [Yk] be the linear span of Yk. Assume δ≤|Xn|≤K for some δ>0 and K>0 and let C(p,m)=16(52p2p−1)m−1plogp(Kδ)m for 1<p<∞. We show that for f∈[Ym] the following inequalities hold:‖f‖2≤‖f‖p≤C(p,m)‖f‖2                       for   2<p<∞‖f‖2≤C(q,m)‖f‖p≤C(q,m)‖f‖2     for   1<p<2,   1p+1q=1and ‖f‖2≤C(4,m)2‖f‖1≤C(4,m)2‖f‖2. These generalize various well known inequalities on Walsh functions.http://dx.doi.org/10.1155/S0161171290000527
spellingShingle D. Hajela
Inequalities for Walsh like random variables
International Journal of Mathematics and Mathematical Sciences
title Inequalities for Walsh like random variables
title_full Inequalities for Walsh like random variables
title_fullStr Inequalities for Walsh like random variables
title_full_unstemmed Inequalities for Walsh like random variables
title_short Inequalities for Walsh like random variables
title_sort inequalities for walsh like random variables
url http://dx.doi.org/10.1155/S0161171290000527
work_keys_str_mv AT dhajela inequalitiesforwalshlikerandomvariables