Inequalities for Walsh like random variables
Let (Xn)n≥1 be a sequence of mean zero independent random variables. Let Wk={∏j=1kXij|1≤i1<i2…<ik}, Yk=⋃j≤kWj and let [Yk] be the linear span of Yk. Assume δ≤|Xn|≤K for some δ>0 and K>0 and let C(p,m)=16(52p2p−1)m−1plogp(Kδ)m for 1<p<∞. We show that for f∈[Ym] the following inequal...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1990-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171290000527 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558655048777728 |
---|---|
author | D. Hajela |
author_facet | D. Hajela |
author_sort | D. Hajela |
collection | DOAJ |
description | Let (Xn)n≥1 be a sequence of mean zero independent random variables. Let Wk={∏j=1kXij|1≤i1<i2…<ik}, Yk=⋃j≤kWj and let [Yk] be the linear span of Yk. Assume δ≤|Xn|≤K for some δ>0 and K>0 and let C(p,m)=16(52p2p−1)m−1plogp(Kδ)m for 1<p<∞. We show that for f∈[Ym] the following inequalities hold:‖f‖2≤‖f‖p≤C(p,m)‖f‖2 for 2<p<∞‖f‖2≤C(q,m)‖f‖p≤C(q,m)‖f‖2 for 1<p<2, 1p+1q=1and ‖f‖2≤C(4,m)2‖f‖1≤C(4,m)2‖f‖2. These generalize various well known inequalities on Walsh functions. |
format | Article |
id | doaj-art-56bf7389948147e4b2744afc564d1a9b |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1990-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-56bf7389948147e4b2744afc564d1a9b2025-02-03T01:31:51ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113235335610.1155/S0161171290000527Inequalities for Walsh like random variablesD. Hajela0Bell Communications Research, 2P-390, 445 South Street, Morristown, New Jersey 07960, USALet (Xn)n≥1 be a sequence of mean zero independent random variables. Let Wk={∏j=1kXij|1≤i1<i2…<ik}, Yk=⋃j≤kWj and let [Yk] be the linear span of Yk. Assume δ≤|Xn|≤K for some δ>0 and K>0 and let C(p,m)=16(52p2p−1)m−1plogp(Kδ)m for 1<p<∞. We show that for f∈[Ym] the following inequalities hold:‖f‖2≤‖f‖p≤C(p,m)‖f‖2 for 2<p<∞‖f‖2≤C(q,m)‖f‖p≤C(q,m)‖f‖2 for 1<p<2, 1p+1q=1and ‖f‖2≤C(4,m)2‖f‖1≤C(4,m)2‖f‖2. These generalize various well known inequalities on Walsh functions.http://dx.doi.org/10.1155/S0161171290000527 |
spellingShingle | D. Hajela Inequalities for Walsh like random variables International Journal of Mathematics and Mathematical Sciences |
title | Inequalities for Walsh like random variables |
title_full | Inequalities for Walsh like random variables |
title_fullStr | Inequalities for Walsh like random variables |
title_full_unstemmed | Inequalities for Walsh like random variables |
title_short | Inequalities for Walsh like random variables |
title_sort | inequalities for walsh like random variables |
url | http://dx.doi.org/10.1155/S0161171290000527 |
work_keys_str_mv | AT dhajela inequalitiesforwalshlikerandomvariables |