Recurring spoken term discovery in the zero-resource constraint using diagonal patterns
Spoken term discovery (STD) is challenging when a large volume of spoken content is generated without annotations. Unsupervised approaches resolve this challenge by directly computing pattern matches from the acoustic feature representation of the speech signal. However, this approach produces a lot...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Cambridge University Press
2025-01-01
|
| Series: | Data-Centric Engineering |
| Subjects: | |
| Online Access: | https://www.cambridge.org/core/product/identifier/S2632673624000480/type/journal_article |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|