Torus quotient of the Grassmannian $G_{n,2n}$
Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$....
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2023-11-01
|
| Series: | Comptes Rendus. Mathématique |
| Subjects: | |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|