LSTM-Inversion-Based Feedforward–Feedback Nanopositioning Control

This work proposes a two-degree of freedom (2DOF) controller for motion tracking of nanopositioning devices, such as piezoelectric actuators (PEAs), with a broad bandwidth and high precision. The proposed 2DOF controller consists of an inversion feedforward controller and a real-time feedback contro...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruocheng Yin, Juan Ren
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/12/11/747
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work proposes a two-degree of freedom (2DOF) controller for motion tracking of nanopositioning devices, such as piezoelectric actuators (PEAs), with a broad bandwidth and high precision. The proposed 2DOF controller consists of an inversion feedforward controller and a real-time feedback controller. The feedforward controller, a sequence-to-sequence LSTM-based inversion model (invLSTMs2s), is used to compensate for the nonlinearity of the PEA, especially at high frequencies, and is collaboratively integrated with a linear MPC feedback controller, which ensures the PEA position tracking performance at low frequencies. Therefore, the proposed 2DOF controller, namely, invLSTMs2s+MPC, is able to achieve high precision over a broad bandwidth. To validate the proposed controller, the uncertainty of invLSTMs2s is checked such that the integration of an inversion model-based feedforward controller has a positive impact on the trajectory tracking performance compared to feedback control only. Experimental validation on a commercial PEA and comparison with existing approaches demonstrate that high tracking accuracies can be achieved by invLSTMs2s+MPC for various reference trajectories. Moreover, invLSTMs2s+MPC is further demonstrated on a multi-dimensional PEA platform for simultaneous multi-direction positioning control.
ISSN:2075-1702