Optimal Stopping Theory-Based Online Node Selection in IoT Networks for Multi-Parameter Federated Learning
Federated Learning (FL) has attracted the interest of researchers since it hinders inefficient resource utilization by developing a global learning model based on local model parameters (LMP). This study introduces a novel optimal stopping theory (OST) based online node selection scheme for low comp...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Transactions on Machine Learning in Communications and Networking |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10988901/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|