Multistep Hybrid Iterations for Systems of Generalized Equilibria with Constraints of Several Problems
We first introduce and analyze one multistep iterative algorithm by hybrid shrinking projection method for finding a solution of the system of generalized equilibria with constraints of several problems: the generalized mixed equilibrium problem, finitely many variational inclusions, the minimizatio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/637324 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We first introduce and analyze one multistep iterative algorithm by hybrid shrinking projection method for finding a solution of the system of generalized equilibria with constraints of several problems: the generalized mixed equilibrium problem, finitely many variational inclusions, the minimization problem for a convex and continuously Fréchet differentiable functional, and the fixed-point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another multistep iterative algorithm involving no shrinking projection method and derive its weak convergence under mild assumptions. |
---|---|
ISSN: | 1085-3375 1687-0409 |