Physics-Based Self-Supervised Grasp Pose Detection

Current industrial robotic manipulators have made their lack of flexibility evident. The systems must know beforehand the piece and its position. To address this issue, contemporary approaches typically employ learning-based techniques, which rely on extensive amounts of data. To obtain vast data, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Jon Ander Ruiz, Ander Iriondo, Elena Lazkano, Ander Ansuategi, Iñaki Maurtua
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/1/12
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current industrial robotic manipulators have made their lack of flexibility evident. The systems must know beforehand the piece and its position. To address this issue, contemporary approaches typically employ learning-based techniques, which rely on extensive amounts of data. To obtain vast data, an often sought tool is an extensive grasp dataset. This work introduces our Physics-Based Self-Supervised Grasp Pose Detection (PBSS-GPD) pipeline for model-based grasping point detection, which is useful for generating grasp pose datasets. Given a gripper-object pair, it samples grasping pose candidates using a modified version of GPD (implementing inner-grasps, CAD support…) and quantifies their quality using the MuJoCo physics engine and a grasp quality metric that takes into account the pose of the object over time. The system is optimized to run on CPU in headless-parallelized mode, with the option of running in a graphical interface or headless and storing videos of the process. The system has been validated obtaining grasping poses for a subset of Egad! objects using the Franka Panda two-finger gripper, compared with state-of-the-art grasp generation pipelines and tested in a real scenario. While our system achieves similar accuracy compared to a contemporary approach, 84% on the real-world validation, it has proven to be effective at generating grasps with good centering 18 times faster than the compared system.
ISSN:2075-1702