ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance

Objective: Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on...

Full description

Saved in:
Bibliographic Details
Main Authors: Philipp Stüve, Gloria J. Godoy, Fernando N. Ferreyra, Florencia Hellriegel, Fatima Boukhallouk, Yu-San Kao, Tushar H. More, Anne-Marie Matthies, Tatiana Akimova, Wolf-Rainer Abraham, Volkhard Kaever, Ingo Schmitz, Karsten Hiller, Matthias Lochner, Benoît L. Salomon, Ulf H. Beier, Michael Rehli, Tim Sparwasser, Luciana Berod
Format: Article
Language:English
Published: Elsevier 2025-04-01
Series:Molecular Metabolism
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2212877825000183
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850068419242622976
author Philipp Stüve
Gloria J. Godoy
Fernando N. Ferreyra
Florencia Hellriegel
Fatima Boukhallouk
Yu-San Kao
Tushar H. More
Anne-Marie Matthies
Tatiana Akimova
Wolf-Rainer Abraham
Volkhard Kaever
Ingo Schmitz
Karsten Hiller
Matthias Lochner
Benoît L. Salomon
Ulf H. Beier
Michael Rehli
Tim Sparwasser
Luciana Berod
author_facet Philipp Stüve
Gloria J. Godoy
Fernando N. Ferreyra
Florencia Hellriegel
Fatima Boukhallouk
Yu-San Kao
Tushar H. More
Anne-Marie Matthies
Tatiana Akimova
Wolf-Rainer Abraham
Volkhard Kaever
Ingo Schmitz
Karsten Hiller
Matthias Lochner
Benoît L. Salomon
Ulf H. Beier
Michael Rehli
Tim Sparwasser
Luciana Berod
author_sort Philipp Stüve
collection DOAJ
description Objective: Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs). Methods: We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases. Results: Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acetylation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt+FoxP3+ cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models. Conclusions: We identified ACC1 as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.
format Article
id doaj-art-4ae1915e035a4e6ea6de526a016b7879
institution DOAJ
issn 2212-8778
language English
publishDate 2025-04-01
publisher Elsevier
record_format Article
series Molecular Metabolism
spelling doaj-art-4ae1915e035a4e6ea6de526a016b78792025-08-20T02:48:03ZengElsevierMolecular Metabolism2212-87782025-04-019410211110.1016/j.molmet.2025.102111ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerancePhilipp Stüve0Gloria J. Godoy1Fernando N. Ferreyra2Florencia Hellriegel3Fatima Boukhallouk4Yu-San Kao5Tushar H. More6Anne-Marie Matthies7Tatiana Akimova8Wolf-Rainer Abraham9Volkhard Kaever10Ingo Schmitz11Karsten Hiller12Matthias Lochner13Benoît L. Salomon14Ulf H. Beier15Michael Rehli16Tim Sparwasser17Luciana Berod18Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, GermanyInstitute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, GermanyInstitute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, ArgentinaInstitute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, ArgentinaInstitute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, GermanyInstitute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, GermanyDepartment of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, GermanySystems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, GermanyDivision of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USADepartment of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany; Department of Chemical Microbiology, HZI, Braunschweig 38124, GermanyResearch Core Unit Metabolomics, MHH, Hannover 30625, GermanySystems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, GermanyDepartment of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, GermanyInstitute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Institute of Medical Microbiology and Hospital Epidemiology, MHH, Hannover 30625, GermanySorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris 75013, FranceDivision of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USALeibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, GermanyInstitute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany; Corresponding author. Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.Objective: Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs). Methods: We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases. Results: Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acetylation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt+FoxP3+ cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models. Conclusions: We identified ACC1 as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.http://www.sciencedirect.com/science/article/pii/S2212877825000183ACC1Adoptive Treg transferEpigenetic regulationFatty acid synthesisTreg stabilityAcetylation
spellingShingle Philipp Stüve
Gloria J. Godoy
Fernando N. Ferreyra
Florencia Hellriegel
Fatima Boukhallouk
Yu-San Kao
Tushar H. More
Anne-Marie Matthies
Tatiana Akimova
Wolf-Rainer Abraham
Volkhard Kaever
Ingo Schmitz
Karsten Hiller
Matthias Lochner
Benoît L. Salomon
Ulf H. Beier
Michael Rehli
Tim Sparwasser
Luciana Berod
ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance
Molecular Metabolism
ACC1
Adoptive Treg transfer
Epigenetic regulation
Fatty acid synthesis
Treg stability
Acetylation
title ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance
title_full ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance
title_fullStr ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance
title_full_unstemmed ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance
title_short ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance
title_sort acc1 is a dual metabolic epigenetic regulator of treg stability and immune tolerance
topic ACC1
Adoptive Treg transfer
Epigenetic regulation
Fatty acid synthesis
Treg stability
Acetylation
url http://www.sciencedirect.com/science/article/pii/S2212877825000183
work_keys_str_mv AT philippstuve acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT gloriajgodoy acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT fernandonferreyra acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT florenciahellriegel acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT fatimaboukhallouk acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT yusankao acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT tusharhmore acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT annemariematthies acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT tatianaakimova acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT wolfrainerabraham acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT volkhardkaever acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT ingoschmitz acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT karstenhiller acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT matthiaslochner acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT benoitlsalomon acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT ulfhbeier acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT michaelrehli acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT timsparwasser acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance
AT lucianaberod acc1isadualmetabolicepigeneticregulatoroftregstabilityandimmunetolerance