Oligodendrocyte precursor cells facilitate neuronal lysosome release
Abstract Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neur...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56484-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes. A reduction in the number or branching of OPCs reduces these contacts, which is associated with lysosome accumulation and altered metabolism in neurons and more senescent neurons with age. A similar reduction in OPC branching and neuronal lysosome accumulation is seen in an early-stage mouse model of Alzheimer’s disease. Our findings have implications for the prevention of age-related pathologies and the treatment of neurodegenerative diseases. |
---|---|
ISSN: | 2041-1723 |