MKRN1 degrades AGC1 to trigger chemotherapy resistance of colorectal Cancer
Abstract Oxaliplatin (Oxa) has been extensively employed in treatment of colorectal cancer (CRC), yet frequent occurrence of chemoresistance poses a significant obstacle to achieving long-term disease-free survival for CRC patients. In this study, we employed a CRISPR/Cas9 sgRNA library targeting 1,...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-07-01
|
| Series: | Molecular Medicine |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s10020-025-01287-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Oxaliplatin (Oxa) has been extensively employed in treatment of colorectal cancer (CRC), yet frequent occurrence of chemoresistance poses a significant obstacle to achieving long-term disease-free survival for CRC patients. In this study, we employed a CRISPR/Cas9 sgRNA library targeting 1,117 human ubiquitination-related genes to screen key regulators of sensitivity to Oxa and identified the Makorin Ring Finger Protein 1 (MKRN1), an E3 ligase, as an Oxa-resistant gene of CRC cells. Clinically, MKRN1 is highly expressed in CRC tissues compared with the adjacent normal tissue, and its upregulation is correlated with poor therapeutic response, disease progression, and worse overall survival of CRC patients treated with Oxa-based regimens. In CRC cells, gain- and loss-of-function studies of MKRN1 respectively altered the sensitivity to Oxa treatment, as evidenced by changes in IC50 values and cell apoptosis. Mechanistic analysis revealed that MKRN1 interacts with Aspartate/Glutamate Carrier 1 (AGC1), facilitating degradation of AGC1 via K11- and K29-linked ubiquitination, thereby affecting mitochondrial function including energy metabolism and antioxidant responses. Through reprogramming of metabolic genes, this process enhances the expression of heat shock protein HSPD1 and HSP90AA1, while reducing oxidative stress, ultimately contributing to the development of Oxa resistance in CRC cells. Moreover, AGC1 knockdown rescued the MKRN1-deficiency induced Oxa-sensitivity of CRC cells and in xenograft mouse model. Translationally, we identified Rabdosiin as a potential inhibitor of MKRN1 through virtual screening, and validated the synergetic effect of Rabdosiin and Oxa in treating Oxa-resistant CRC cells both in vitro and in vivo. Taken together, our findings highlight the pivotal role of MKRN1-AGC1 axis in dictating CRC chemoresistance and offer novel therapeutic strategies for overcoming Oxa-resistance. Graphical Abstract |
|---|---|
| ISSN: | 1528-3658 |