Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies

Abstract Transcriptomics is key to understanding how bacterial pathogens adapt and cause disease, but remains constrained by cost, technical, and biosafety issues, especially for highly virulent and/or regulated pathogens. Here, we present a streamlined and cost-effective RNA-Seq workflow using Oxfo...

Full description

Saved in:
Bibliographic Details
Main Authors: Brandon Robin, Alexandre Baillez, Servane Le Guillouzer, Cécile Lecoeur, Florent Sebbane, Sébastien Bontemps-Gallo
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-05662-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849768890239811584
author Brandon Robin
Alexandre Baillez
Servane Le Guillouzer
Cécile Lecoeur
Florent Sebbane
Sébastien Bontemps-Gallo
author_facet Brandon Robin
Alexandre Baillez
Servane Le Guillouzer
Cécile Lecoeur
Florent Sebbane
Sébastien Bontemps-Gallo
author_sort Brandon Robin
collection DOAJ
description Abstract Transcriptomics is key to understanding how bacterial pathogens adapt and cause disease, but remains constrained by cost, technical, and biosafety issues, especially for highly virulent and/or regulated pathogens. Here, we present a streamlined and cost-effective RNA-Seq workflow using Oxford Nanopore Technologies for direct cDNA sequencing, suitable for complete in-house implementation. This method avoids PCR bias, enables multiplexing, and includes built-in quality controls and alignment benchmarking. Applied to Yersinia pestis (the causative agent of plague), the workflow produced an experimentally validated operon map and revealed novel transcriptional units, including within the pathogenicity island. Transcriptomic profiling at 21 °C and 37 °C, modeling the flea and mammalian environments, highlighted temperature-driven metabolic shifts, notably the upregulation of sulfur metabolism and the dmsABCD operon. These findings provide insights into Y. pestis adaptation and illustrate how long-read RNA-Seq can support operon discovery, genome annotation, and gene regulation studies in high-risk or understudied bacterial pathogens.
format Article
id doaj-art-48d16c0b93134b3da1f3d976f28e269b
institution DOAJ
issn 2045-2322
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-48d16c0b93134b3da1f3d976f28e269b2025-08-20T03:03:40ZengNature PortfolioScientific Reports2045-23222025-07-0115111110.1038/s41598-025-05662-1Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore TechnologiesBrandon Robin0Alexandre Baillez1Servane Le Guillouzer2Cécile Lecoeur3Florent Sebbane4Sébastien Bontemps-Gallo5Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleAbstract Transcriptomics is key to understanding how bacterial pathogens adapt and cause disease, but remains constrained by cost, technical, and biosafety issues, especially for highly virulent and/or regulated pathogens. Here, we present a streamlined and cost-effective RNA-Seq workflow using Oxford Nanopore Technologies for direct cDNA sequencing, suitable for complete in-house implementation. This method avoids PCR bias, enables multiplexing, and includes built-in quality controls and alignment benchmarking. Applied to Yersinia pestis (the causative agent of plague), the workflow produced an experimentally validated operon map and revealed novel transcriptional units, including within the pathogenicity island. Transcriptomic profiling at 21 °C and 37 °C, modeling the flea and mammalian environments, highlighted temperature-driven metabolic shifts, notably the upregulation of sulfur metabolism and the dmsABCD operon. These findings provide insights into Y. pestis adaptation and illustrate how long-read RNA-Seq can support operon discovery, genome annotation, and gene regulation studies in high-risk or understudied bacterial pathogens.https://doi.org/10.1038/s41598-025-05662-1Oxford Nanopore TechnologyRNA-SeqYersinia pestisOperons mappingTemperature adaptation
spellingShingle Brandon Robin
Alexandre Baillez
Servane Le Guillouzer
Cécile Lecoeur
Florent Sebbane
Sébastien Bontemps-Gallo
Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies
Scientific Reports
Oxford Nanopore Technology
RNA-Seq
Yersinia pestis
Operons mapping
Temperature adaptation
title Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies
title_full Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies
title_fullStr Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies
title_full_unstemmed Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies
title_short Exploring temperature-dependent transcriptomic adaptations in Yersinia pestis using direct cDNA sequencing by Oxford Nanopore Technologies
title_sort exploring temperature dependent transcriptomic adaptations in yersinia pestis using direct cdna sequencing by oxford nanopore technologies
topic Oxford Nanopore Technology
RNA-Seq
Yersinia pestis
Operons mapping
Temperature adaptation
url https://doi.org/10.1038/s41598-025-05662-1
work_keys_str_mv AT brandonrobin exploringtemperaturedependenttranscriptomicadaptationsinyersiniapestisusingdirectcdnasequencingbyoxfordnanoporetechnologies
AT alexandrebaillez exploringtemperaturedependenttranscriptomicadaptationsinyersiniapestisusingdirectcdnasequencingbyoxfordnanoporetechnologies
AT servaneleguillouzer exploringtemperaturedependenttranscriptomicadaptationsinyersiniapestisusingdirectcdnasequencingbyoxfordnanoporetechnologies
AT cecilelecoeur exploringtemperaturedependenttranscriptomicadaptationsinyersiniapestisusingdirectcdnasequencingbyoxfordnanoporetechnologies
AT florentsebbane exploringtemperaturedependenttranscriptomicadaptationsinyersiniapestisusingdirectcdnasequencingbyoxfordnanoporetechnologies
AT sebastienbontempsgallo exploringtemperaturedependenttranscriptomicadaptationsinyersiniapestisusingdirectcdnasequencingbyoxfordnanoporetechnologies