On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic...
Saved in:
Main Author: | Caspers, Martijn |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-12-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
An application of the Sakai's theorem to the characterization of H*-algebras
by: Borut Zalar
Published: (1995-01-01) -
Classification of injective factors: The wok of Alain Connes
by: Steve Wright
Published: (1983-01-01) -
A metric space associated with probability space
by: Keith F. Taylor, et al.
Published: (1993-01-01) -
On the range of completely bounded maps
by: Richard I. Loebl
Published: (1978-01-01) -
Derivations with values in noncommutative symmetric spaces
by: Huang, Jinghao, et al.
Published: (2023-10-01)