On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic...
Saved in:
Main Author: | Caspers, Martijn |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-12-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Derivations with values in noncommutative symmetric spaces
by: Huang, Jinghao, et al.
Published: (2023-10-01) -
Ince-Gaussian laser beams as superposition of Hermite-Gaussian or Laguerre-Gaussian beams
by: E.G. Abramochkin, et al.
Published: (2024-08-01) -
On Saigo Fractional $q$-Calculus of a General Class of $q$-Polynomials
by: Biniyam Shimelis, et al.
Published: (2024-03-01) -
Curtright-Zachos supersymmetric deformations of the Virasoro algebra in quantum superspace and Bloch electron systems
by: Haru-Tada Sato
Published: (2025-02-01) -
Integrated Gaussian Processes for Tracking
by: Fred Lydeard, et al.
Published: (2025-01-01)