Transposable elements may enhance antiviral resistance in HIV-1 elite controllers

Abstract Background Less than 0.5% of people living with HIV-1 are elite controllers (ECs)—individuals who maintain undetectable plasma viremia without antiretroviral therapy, despite having replication-competent viral reservoirs. While EC CD4+ T cells have been investigated for gene expression sign...

Full description

Saved in:
Bibliographic Details
Main Authors: Manvendra Singh, Sabrina M. Leddy, Luis Pedro Iñiguez, Matthew L. Bendall, Douglas F. Nixon, Cédric Feschotte
Format: Article
Language:English
Published: BMC 2025-02-01
Series:Genome Biology
Subjects:
Online Access:https://doi.org/10.1186/s13059-025-03484-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Less than 0.5% of people living with HIV-1 are elite controllers (ECs)—individuals who maintain undetectable plasma viremia without antiretroviral therapy, despite having replication-competent viral reservoirs. While EC CD4+ T cells have been investigated for gene expression signatures associated with HIV-1 resistance, the expression and regulatory activity of transposable elements (TEs) remain unexplored. TEs can directly impact host immune responses to pathogens, including HIV-1, suggesting their activities could contribute to HIV-1 elite control. To begin testing this hypothesis, we conduct a TE-centric analysis of public multi-omics data from ECs and other populations. Results We find the CD4+ T cell transcriptome and retrotranscriptome of ECs are distinct from healthy controls, from people living with HIV-1 on antiretroviral therapy, and from viremic progressors. However, there is substantial transcriptomic heterogeneity among ECs. We categorize ECs into four clusters with distinct expression and chromatin accessibility profiles of TEs and antiviral factors. Several TE families with known immuno-regulatory activity are differentially expressed among ECs. Their expression positively correlates with their chromatin accessibility in ECs and negatively correlates with the expression of their KRAB zinc-finger (KZNF) repressors. This coordinated, locus-level variation forms a network of putative cis-regulatory elements for genes involved in HIV-1 restriction. Conclusions We propose that the EC phenotype is driven in part by reduced KZNF-mediated repression of specific TE-derived cis-regulatory elements for antiviral genes, heightening their resistance against HIV-1. Our study reveals heterogeneity in the EC CD4+ T cell transcriptome, including variable expression of TEs and their KZNF controllers, that must be considered when deciphering HIV-1 control mechanisms.
ISSN:1474-760X