机器学习方法研究重离子熔合反应截面

本文利用基于决策树的机器学习算法——LightGBM(Light Gradient Boosting Machine)研究偶偶核体系的重离子熔合反应的截面(Cross Section,CS)。机器学习算法的输入特征量包括与原子核基本性质相关的物理量(如弹靶核的质子数、质量数、2<sup>+</sup>和4<sup>+</sup>态激发能量等)以及从唯象理论模型计算得到的CS,输出量为熔合截面。研究发现,当输入特征量中不包含唯象模型计算的CS时,在训练集上LightGBM预测的CS与实验值的平均绝对误差(Mean Absolute Error,MA...

Full description

Saved in:
Bibliographic Details
Main Authors: 李 志龙, 王 永佳, 李 庆峰
Format: Article
Language:zho
Published: Science Press 2025-05-01
Series:He jishu
Subjects:
Online Access:https://www.sciengine.com/doi/10.11889/j.0253-3219.2025.hjs.48.250132
Tags: Add Tag
No Tags, Be the first to tag this record!