The HNRNPC/CELF2 signaling pathway drives glycolytic reprogramming and mitochondrial dysfunction in drug-resistant acute myeloid leukemia
Abstract Background Acute myeloid leukemia (AML) is an aggressive cancer with high treatment resistance, often leading to poor patient outcomes. Metabolic reprogramming plays a critical role in AML progression, influencing drug resistance (DR) and tumor survival. This study investigates the HNRNPC/C...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-05-01
|
| Series: | Cell & Bioscience |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s13578-025-01386-x |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background Acute myeloid leukemia (AML) is an aggressive cancer with high treatment resistance, often leading to poor patient outcomes. Metabolic reprogramming plays a critical role in AML progression, influencing drug resistance (DR) and tumor survival. This study investigates the HNRNPC/CELF2 signaling pathway and its impact on AML cell metabolism and DR. Results The study identified that HNRNPC regulates the expression of CELF2 through m6 A modification. In drug-resistant AML cells, increased HNRNPC expression and decreased CELF2 expression were associated with upregulated glycolysis, enhanced glucose consumption, lactate production, and mitochondrial dysfunction. Knockdown of HNRNPC reduced glycolysis and cell invasion, while CELF2 knockdown reversed these effects. Conversely, HNRNPC overexpression enhanced glycolysis and cell migration, which were counteracted by CELF2 overexpression. Conclusions The HNRNPC/CELF2 axis plays a pivotal role in metabolic reprogramming, driving AML progression and chemotherapy resistance. Targeting this pathway may offer new therapeutic strategies to overcome resistance and improve treatment outcomes in AML patients. |
|---|---|
| ISSN: | 2045-3701 |