Myeloid-derived suppressor cell inhibits T-cell-based defense against Klebsiella pneumoniae infection via IDO1 production.
Klebsiella pneumoniae (Kp) is responsible for a wide range of infections, including pneumonia, sepsis, and urinary tract infections. However, the treatment options are limited due to the continuous evolution of drug-resistant and hypervirulent variants. It is crucial to investigate the mechanisms be...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-03-01
|
| Series: | PLoS Pathogens |
| Online Access: | https://doi.org/10.1371/journal.ppat.1012979 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Klebsiella pneumoniae (Kp) is responsible for a wide range of infections, including pneumonia, sepsis, and urinary tract infections. However, the treatment options are limited due to the continuous evolution of drug-resistant and hypervirulent variants. It is crucial to investigate the mechanisms behind the high mortality rate of hypervirulent Kp (hvKp) strains to develop new strategies for preventing hvKp from evading the host's defenses and improving treatment effectiveness for these fatal infections. In this study, we used a hvKp-induced mouse bacteremia model and performed single-cell RNA sequencing to investigate the effects of hvKp infection. Our findings demonstrated that hvKp infection led to a decrease in lymphocytes (lymphopenia), attributed to impaired proliferation and apoptosis. The infiltration of myeloid-derived suppressor cells (MDSCs) in the infected lungs was confirmed to suppress T cell proliferation, leading to lymphopenia. We further identified that hvKp promotes tryptophan metabolism in infected lungs, enhancing the immunosuppressive activity of MDSCs by inducing the production of the enzyme IDO1. Our ex vivo inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the Ido1 gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hvKp. These findings highlight the crucial role of MDSCs in hvKp-induced bacteremia and suggest a promising immunotherapeutic approach by inhibiting IDO1 production to combat infectious diseases. |
|---|---|
| ISSN: | 1553-7366 1553-7374 |