Integrated Electrochemical and Computational Elucidation of Nitro Blue Tetrazolium Chloride as an Efficient Leveler for Copper Microvia Superfilling
Levelers are indispensable additives for achieving void-free, bottom-up superconformal copper filling of microvias. Establishing the molecular-level correlation between leveler structure and performance is therefore essential to the continued advancement of microelectronic copper-plating technology....
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/6/721 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Levelers are indispensable additives for achieving void-free, bottom-up superconformal copper filling of microvias. Establishing the molecular-level correlation between leveler structure and performance is therefore essential to the continued advancement of microelectronic copper-plating technology. Herein, nitro blue tetrazolium chloride (NBT) is identified as an efficient leveler for copper microvia superfilling. A multiscale strategy—combining electrochemical measurements, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and molecular dynamics (MD) simulations—is employed to elucidate the action mechanism of NBT and pinpoint its electroactive sites. Electrochemical tests show that NBT markedly suppresses copper deposition and, together with polyethylene glycol (PEG), effectively resists competitive adsorption by bis-(3-sulfopropyl) disulfide (SPS), thereby enhancing the microvia superfilling performance of the PEG–SPS–NBT additive system. DFT results reveal that the nitro groups and tetrazolium rings constitute the primary adsorption centers on the copper surface; the nitro groups additionally strengthen intermolecular interactions between NBT and PEG. MD simulations further confirm that NBT anchors onto the Cu(111) surface predominantly through these NO<sub>2</sub> groups and the tetrazolium ring, while co-adsorbed PEG enhances the overall adsorption strength of NBT. The electroplating experiment demonstrates that NBT can act as an effective leveler for microvia superfilling. Moreover, XPS analyses further confirm the synergistic co-adsorption of NBT and PEG and verify that the NO<sub>2</sub> groups and tetrazolium rings are the dominant adsorption sites of NBT. Collectively, the electroplating, XPS, electrochemical, DFT, and MD findings clarify the structure–activity relationship of NBT and provide rational guidelines for designing next-generation copper-plating levelers. |
|---|---|
| ISSN: | 2072-666X |