Structures, Morphological Control, and Antibacterial Performance of Ag/TiO2 Micro-Nanocomposite Materials
Structures, morphological control, and antibacterial activity of silver-titanium dioxide (Ag/TiO2) micro-nanocomposite materials against Staphylococcus aureus are investigated in this study. Horizontal vapor phase growth (HVPG) technique was used to synthesize the Ag/TiO2 micro-nanomaterials, with p...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/9821535 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structures, morphological control, and antibacterial activity of silver-titanium dioxide (Ag/TiO2) micro-nanocomposite materials against Staphylococcus aureus are investigated in this study. Horizontal vapor phase growth (HVPG) technique was used to synthesize the Ag/TiO2 micro-nanomaterials, with parameters of growth temperature and baking time. The materials were characterized by using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and atomic force microscope (AFM). The result indicated that the HVPG technique is able to synthesize Ag/TiO2 with many shapes in micro- and nanoscale such as nanoparticles, nanorods, triangular nanomaterials, and nanotubes. The results showed that the shape of micro- and nanocomposites material could be arranged by adjusting the parameters. The results revealed that the nanorods structure were obtained at 1000°C growth temperature and that 8 hours of baking time was ideal for antibacterial application. Treating the S. aureus stock with Ag/TiO2 nanocomposites is able to reduce bacterial growth with a significant result. |
---|---|
ISSN: | 1687-8434 1687-8442 |