Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data

IntroductionThe availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea Angarita-Rodríguez, Nicolás Mendoza-Mejía, Janneth González, Jason Papin, Andrés Felipe Aristizábal, Andrés Pinzón
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-01-01
Series:Frontiers in Systems Biology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fsysb.2024.1500710/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841561028625694720
author Andrea Angarita-Rodríguez
Andrea Angarita-Rodríguez
Andrea Angarita-Rodríguez
Nicolás Mendoza-Mejía
Nicolás Mendoza-Mejía
Janneth González
Jason Papin
Jason Papin
Jason Papin
Andrés Felipe Aristizábal
Andrés Pinzón
author_facet Andrea Angarita-Rodríguez
Andrea Angarita-Rodríguez
Andrea Angarita-Rodríguez
Nicolás Mendoza-Mejía
Nicolás Mendoza-Mejía
Janneth González
Jason Papin
Jason Papin
Jason Papin
Andrés Felipe Aristizábal
Andrés Pinzón
author_sort Andrea Angarita-Rodríguez
collection DOAJ
description IntroductionThe availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing methods often link transcriptome and proteome data independently to reaction boundaries, providing models with estimated maximum reaction rates based on individual datasets. This independent approach, however, introduces uncertainties and inaccuracies.MethodsTo address these challenges, we applied a principal component analysis (PCA)-based approach to integrate transcriptome and proteome data. This method facilitates the reconstruction of context-specific models grounded in multi-omics data, enhancing their biological relevance and predictive capacity.ResultsUsing this approach, we successfully reconstructed an astrocyte GEM with improved prediction capabilities compared to state-of-the-art models available in the literature.DiscussionThese advancements underscore the potential of multi-omic inte-gration to refine metabolic modeling and its critical role in studying neurodegeneration and developing effective therapies.
format Article
id doaj-art-40ce49bea47a4dd890959c7ad552f611
institution Kabale University
issn 2674-0702
language English
publishDate 2025-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Systems Biology
spelling doaj-art-40ce49bea47a4dd890959c7ad552f6112025-01-03T06:47:24ZengFrontiers Media S.A.Frontiers in Systems Biology2674-07022025-01-01410.3389/fsysb.2024.15007101500710Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic dataAndrea Angarita-Rodríguez0Andrea Angarita-Rodríguez1Andrea Angarita-Rodríguez2Nicolás Mendoza-Mejía3Nicolás Mendoza-Mejía4Janneth González5Jason Papin6Jason Papin7Jason Papin8Andrés Felipe Aristizábal9Andrés Pinzón10Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, ColombiaLaboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, ColombiaDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA, United StatesDepartamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, ColombiaLaboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, ColombiaDepartamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, ColombiaDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA, United StatesDepartment of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United StatesDepartment of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United StatesDepartamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, ColombiaLaboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, ColombiaIntroductionThe availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing methods often link transcriptome and proteome data independently to reaction boundaries, providing models with estimated maximum reaction rates based on individual datasets. This independent approach, however, introduces uncertainties and inaccuracies.MethodsTo address these challenges, we applied a principal component analysis (PCA)-based approach to integrate transcriptome and proteome data. This method facilitates the reconstruction of context-specific models grounded in multi-omics data, enhancing their biological relevance and predictive capacity.ResultsUsing this approach, we successfully reconstructed an astrocyte GEM with improved prediction capabilities compared to state-of-the-art models available in the literature.DiscussionThese advancements underscore the potential of multi-omic inte-gration to refine metabolic modeling and its critical role in studying neurodegeneration and developing effective therapies.https://www.frontiersin.org/articles/10.3389/fsysb.2024.1500710/fullgenome-scale metabolic modelstranscriptomeproteomedimensional reductionastrocyte
spellingShingle Andrea Angarita-Rodríguez
Andrea Angarita-Rodríguez
Andrea Angarita-Rodríguez
Nicolás Mendoza-Mejía
Nicolás Mendoza-Mejía
Janneth González
Jason Papin
Jason Papin
Jason Papin
Andrés Felipe Aristizábal
Andrés Pinzón
Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
Frontiers in Systems Biology
genome-scale metabolic models
transcriptome
proteome
dimensional reduction
astrocyte
title Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
title_full Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
title_fullStr Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
title_full_unstemmed Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
title_short Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
title_sort improvement in the prediction power of an astrocyte genome scale metabolic model using multi omic data
topic genome-scale metabolic models
transcriptome
proteome
dimensional reduction
astrocyte
url https://www.frontiersin.org/articles/10.3389/fsysb.2024.1500710/full
work_keys_str_mv AT andreaangaritarodriguez improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT andreaangaritarodriguez improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT andreaangaritarodriguez improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT nicolasmendozamejia improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT nicolasmendozamejia improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT jannethgonzalez improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT jasonpapin improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT jasonpapin improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT jasonpapin improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT andresfelipearistizabal improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata
AT andrespinzon improvementinthepredictionpowerofanastrocytegenomescalemetabolicmodelusingmultiomicdata