Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations

Abstract The double quantum well structure, composed of GaAs/AlGaAs doped with silicon atoms, was investigated was analyzed under varying temperature and axial pressure conditions by simultaneously numerically resolving the Schrödinger and Poisson equations. Subsequently, the effects of pressure and...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Jaouane, R. Arraoui, A. Ed-Dahmouny, H. M. Althib, A. Alkhaldi, A. Fakkahi, H. Azmi, K. El-Bakkari, H. El Ghazi, A. Sali
Format: Article
Language:English
Published: Springer 2025-08-01
Series:Discover Applied Sciences
Subjects:
Online Access:https://doi.org/10.1007/s42452-025-07462-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849331810487500800
author M. Jaouane
R. Arraoui
A. Ed-Dahmouny
H. M. Althib
A. Alkhaldi
A. Fakkahi
H. Azmi
K. El-Bakkari
H. El Ghazi
A. Sali
author_facet M. Jaouane
R. Arraoui
A. Ed-Dahmouny
H. M. Althib
A. Alkhaldi
A. Fakkahi
H. Azmi
K. El-Bakkari
H. El Ghazi
A. Sali
author_sort M. Jaouane
collection DOAJ
description Abstract The double quantum well structure, composed of GaAs/AlGaAs doped with silicon atoms, was investigated was analyzed under varying temperature and axial pressure conditions by simultaneously numerically resolving the Schrödinger and Poisson equations. Subsequently, the effects of pressure and temperature were found to significantly influence electron probability distribution, energy levels, Fermi energy, and electron density for both scenarios: a single doped quantum well and two doped quantum wells. An increase in pressure or temperature causes the energy levels to shift to lower values, and the electron becomes less localized within the confinement region. We hope that our simulation results will be utilized by investors to fabricate electronic devices capable of operating under varying external pressures and temperatures.
format Article
id doaj-art-3fc2a1370bbc474f801af376e7090e5b
institution Kabale University
issn 3004-9261
language English
publishDate 2025-08-01
publisher Springer
record_format Article
series Discover Applied Sciences
spelling doaj-art-3fc2a1370bbc474f801af376e7090e5b2025-08-20T03:46:24ZengSpringerDiscover Applied Sciences3004-92612025-08-017811310.1007/s42452-025-07462-8Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variationsM. Jaouane0R. Arraoui1A. Ed-Dahmouny2H. M. Althib3A. Alkhaldi4A. Fakkahi5H. Azmi6K. El-Bakkari7H. El Ghazi8A. Sali9LPS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah UniversityLPS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah UniversityLaRSI Laboratory, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah UniversityDepartment of Physics, College of Science, Imam Abdulrahman Bin Faisal UniversityDepartment of Physics, College of Science, Imam Abdulrahman Bin Faisal UniversityLPS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah UniversityLPS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah UniversityLPS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah UniversityMPIS Group, ENSAM Laboratory, Hassan II UniversityLPS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah UniversityAbstract The double quantum well structure, composed of GaAs/AlGaAs doped with silicon atoms, was investigated was analyzed under varying temperature and axial pressure conditions by simultaneously numerically resolving the Schrödinger and Poisson equations. Subsequently, the effects of pressure and temperature were found to significantly influence electron probability distribution, energy levels, Fermi energy, and electron density for both scenarios: a single doped quantum well and two doped quantum wells. An increase in pressure or temperature causes the energy levels to shift to lower values, and the electron becomes less localized within the confinement region. We hope that our simulation results will be utilized by investors to fabricate electronic devices capable of operating under varying external pressures and temperatures.https://doi.org/10.1007/s42452-025-07462-8Fermi energyIonized dopantsAxial pressureTemperatureSchrodinger–Poisson equations
spellingShingle M. Jaouane
R. Arraoui
A. Ed-Dahmouny
H. M. Althib
A. Alkhaldi
A. Fakkahi
H. Azmi
K. El-Bakkari
H. El Ghazi
A. Sali
Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations
Discover Applied Sciences
Fermi energy
Ionized dopants
Axial pressure
Temperature
Schrodinger–Poisson equations
title Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations
title_full Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations
title_fullStr Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations
title_full_unstemmed Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations
title_short Numerical modeling of the electronic structure of Si-doped n-type GaAs/AlGaAs double quantum wells under hydrostatic pressure and temperature variations
title_sort numerical modeling of the electronic structure of si doped n type gaas algaas double quantum wells under hydrostatic pressure and temperature variations
topic Fermi energy
Ionized dopants
Axial pressure
Temperature
Schrodinger–Poisson equations
url https://doi.org/10.1007/s42452-025-07462-8
work_keys_str_mv AT mjaouane numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT rarraoui numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT aeddahmouny numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT hmalthib numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT aalkhaldi numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT afakkahi numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT hazmi numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT kelbakkari numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT helghazi numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations
AT asali numericalmodelingoftheelectronicstructureofsidopedntypegaasalgaasdoublequantumwellsunderhydrostaticpressureandtemperaturevariations