Effect of radial homogeneity on low-strain integrity detection of a pipe pile in a viscoelastic soil layer

This article proposes a new analytical model for the low-strain integrity detection of a pipe pile embedded in a viscoelastic soil layer with radial inhomogeneity by extending Novak’s plane-strain model and transfer method of complex stiffness to consider viscous-type damping. The analytical solutio...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunyi Cui, Kun Meng, Zhimeng Liang, Chengshun Xu, Gang Yang, Shiping Zhang
Format: Article
Language:English
Published: Wiley 2018-10-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1177/1550147718806459
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article proposes a new analytical model for the low-strain integrity detection of a pipe pile embedded in a viscoelastic soil layer with radial inhomogeneity by extending Novak’s plane-strain model and transfer method of complex stiffness to consider viscous-type damping. The analytical solutions for the complex impedance, the velocity admittance and the reflected wave signal of velocity at the pile head are also derived. Extensive parametric analyses are further conducted to investigate the effects of the disturbance degree and the disturbance range of surrounding soil due to construction operation on the velocity admittance and the reflected wave signal of velocity at the pile head. It is demonstrated that the proposed model and the obtained solutions can provide extensive scope of application, compared with the relevant existing solutions.
ISSN:1550-1477