Seismic Performance Evaluation of Footing-to-Circular RC Pier Connection Reinforced by High-Manganese Steel Bars (HMSBs)

A footing-to-reinforced concrete (RC) pier connection resists the lateral load induced by earthquakes as well as the gravity load. The footing-to-RC pier connection is the vulnerable part to strong earthquake loading. Several studies have been conducted on improving the seismic performance of the co...

Full description

Saved in:
Bibliographic Details
Main Authors: Jung-Kyun Kim, Hak-Eun Lee, Jongmin Kim, Jiho Moon
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2018/4579869
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A footing-to-reinforced concrete (RC) pier connection resists the lateral load induced by earthquakes as well as the gravity load. The footing-to-RC pier connection is the vulnerable part to strong earthquake loading. Several studies have been conducted on improving the seismic performance of the connection by using high-strength reinforcing bars and by adding special structural components, such as steel tube and fiber-reinforced polymer sheet. In this study, reinforcing bars made of high-manganese steel (HMSBs) with high strength and ductility were installed in the connection instead of conventional reinforcing bars to improve the seismic performance. Test specimens were fabricated with HMSBs, and the strength, ductility, and dissipated energy of the connection were evaluated through a cyclic loading test. Three-dimensional finite-element analysis was also performed to investigate the effects of various axial forces on the behavior of the connection with HMSBs. The results show that the connection with HMSBs exhibits better seismic performance, represented by flexural strength, ductility, and energy dissipation, than that with ordinary reinforcing bars.
ISSN:1687-8086
1687-8094