Supervised learning of the Jaynes–Cummings Hamiltonian
Abstract We investigate the utility of deep neural networks (DNNs) in estimating the Jaynes-Cummings Hamiltonian’s parameters from its energy spectrum alone. We assume that the energy spectrum may or may not be corrupted by noise. In the noiseless case, we use the vanilla DNN (vDNN) model and find t...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-025-02611-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|