Machine learning-based quantification and separation of emissions and meteorological effects on PM2.5 in Greater Bangkok
Abstract This study presents the first-ever application of machine learning (ML)-based meteorological normalization and Shapley additive explanations (SHAP) analysis to quantify, separate, and understand the effect of meteorology on PM2.5 over Greater Bangkok (GBK). Six ML models namely random fores...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-99094-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|