Hankel and Toeplitz determinants for a subclass of analytic functions
Let the function $f\left( z \right) =z+\sum_{k=2}^{\infty}a{_{k}}z {^{k}}\in A$ be locally univalent for $z \in \mathbb{D}% :=\{z \in \mathbb{C}:{|}z {|}<1\}$ and $0\leq\alpha<1$. Then, $f$\textit{\ }$\in $ $M(\alpha )$ if and only if \begin{equation*} \Re\Big( \left( 1-z ^{2}\right) \frac{f(...
Saved in:
| Main Authors: | M. Buyankara, M. Çağlar |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2023-12-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/415 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Toeplitz Determinants for Inverse of Analytic Functions
by: Sarem H. Hadi, et al.
Published: (2025-02-01) -
Coefficient inequalities and Hankel determinant for a new subclass of q-starlike functions
by: Mohammad Faisal Khan, et al.
Published: (2025-08-01) -
Toeplitz determinants for a certain class of analytic and univalent functions
by: Abbas Kareem Wanas, et al.
Published: (2025-03-01) -
An exact estimate of the third Hankel determinants for functions inverse to convex functions
by: B. Rath, et al.
Published: (2023-09-01) -
On Certain Analytic Functions Associated with Nephroid Function
by: Wahid Ullah, et al.
Published: (2025-02-01)