Hankel and Toeplitz determinants for a subclass of analytic functions
Let the function $f\left( z \right) =z+\sum_{k=2}^{\infty}a{_{k}}z {^{k}}\in A$ be locally univalent for $z \in \mathbb{D}% :=\{z \in \mathbb{C}:{|}z {|}<1\}$ and $0\leq\alpha<1$. Then, $f$\textit{\ }$\in $ $M(\alpha )$ if and only if \begin{equation*} \Re\Big( \left( 1-z ^{2}\right) \frac{f(...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2023-12-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/415 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|